Search results
Results from the WOW.Com Content Network
Algebraic graph theory is a branch of mathematics in which algebraic methods are applied to problems about graphs. This is in contrast to geometric, combinatoric, or algorithmic approaches. There are three main branches of algebraic graph theory, involving the use of linear algebra, the use of group theory, and the study of graph invariants.
Christopher David Godsil is a professor and the former Chair at the Department of Combinatorics and Optimization in the faculty of mathematics at the University of Waterloo.He wrote the popular textbook on algebraic graph theory, entitled Algebraic Graph Theory, with Gordon Royle, [1] His earlier textbook on algebraic combinatorics discussed distance-regular graphs and association schemes.
Gordon F. Royle is a professor at the School of Mathematics and Statistics at The University of Western Australia. [1]Royle is the co-author (with Chris Godsil) of the book Algebraic Graph Theory (Springer Verlag, 2001, ISBN 0-387-95220-9).
Algebraic graph theory is a branch of graph theory Subcategories. This category has the following 2 subcategories, out of 2 total. C. Cayley graphs (3 P) R. Regular ...
The Fano matroid, derived from the Fano plane.Matroids are one of many kinds of objects studied in algebraic combinatorics. Algebraic combinatorics is an area of mathematics that employs methods of abstract algebra, notably group theory and representation theory, in various combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra.
Such a strongly regular graph is denoted by srg(v, k, λ, μ); its "parameters" are the numbers in (v, k, λ, μ). Its complement graph is also strongly regular: it is an srg(v, v − k − 1, v − 2 − 2k + μ, v − 2k + λ). A strongly regular graph is a distance-regular graph with diameter 2 whenever μ is non
Bivariegated graph; Cage (graph theory) Cayley graph; Circle graph; Clique graph; Cograph; Common graph; Complement of a graph; Complete graph; Cubic graph; Cycle graph; De Bruijn graph; Dense graph; Dipole graph; Directed acyclic graph; Directed graph; Distance regular graph; Distance-transitive graph; Edge-transitive graph; Interval graph ...
This notion has made it possible to use the methods of graph theory in universal algebra and several other areas of discrete mathematics and computer science.Graph algebras have been used, for example, in constructions concerning dualities, [2] equational theories, [3] flatness, [4] groupoid rings, [5] topologies, [6] varieties, [7] finite-state machines, [8] [9] tree languages and tree ...