Search results
Results from the WOW.Com Content Network
Like glucose, maltose is a reducing sugar, because the ring of one of the two glucose units can open to present a free aldehyde group; the other one cannot because of the nature of the glycosidic bond. Maltose can be broken down to glucose by the maltase enzyme, which catalyses the hydrolysis of the glycosidic bond. [citation needed]
A disaccharide (also called a double sugar or biose) [1] is the sugar formed when two monosaccharides are joined by glycosidic linkage. [2] Like monosaccharides, disaccharides are simple sugars soluble in water. Three common examples are sucrose, lactose, and maltose.
A glycosidic bond or glycosidic linkage is a type of ether bond that joins a carbohydrate (sugar) molecule to another group, which may or may not be another carbohydrate. Formation of ethyl glucoside: Glucose and ethanol combine to form ethyl glucoside and water .
The starch is first converted, by means of simple enzymatic hydrolysis, into high maltose syrup with di-, tri and oligosaccharides (2, 3 or more glucose units) having α(1,4)-glycosidic linkages which are readily digestible in the human intestine. These α(1,4)-glycosidic linkages are further converted into digestion-resistant α(1,6 ...
Isomaltose is a disaccharide similar to maltose, but with a α-(1-6)-linkage instead of the α-(1-4)-linkage. Both of the sugars are dimers of glucose, which is a pyranose sugar. Isomaltose is a reducing sugar.
Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit, β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit. β-amylase is present in an inactive form prior to seed germination.
Reducing disaccharides like lactose and maltose have only one of their two anomeric carbons involved in the glycosidic bond, while the other is free and can convert to an open-chain form with an aldehyde group. The aldehyde functional group allows the sugar to act as a reducing agent, for example, in the Tollens' test or Benedict's test.
Hydrolysis reaction of Maltose being broken at the 1-4 alpha-glucosidase linkage. The mechanism of all FamilyGH13 enzymes is to break a α-glucosidase linkage by hydrolyzing it. Maltase focuses on breaking apart maltose, a disaccharide that is a link between 2 units of glucose, at the α-(1->4) bond.