Search results
Results from the WOW.Com Content Network
In genetics, underdominance, also known as homozygote advantage, heterozygote disadvantage, or negative overdominance," [1] is the opposite of overdominance. It is the selection against the heterozygote , causing disruptive selection [ 2 ] and divergent genotypes .
Individuals can develop a recessive trait in the phenotype dependent on their sex—for example, colour blindness and haemophilia (see gonosomal inheritances). [ 7 ] [ 8 ] As many of the alleles are dominant or recessive, a true understanding of the principles of Mendelian inheritance is an important requirement to also understand the more ...
A heterozygote advantage describes the case in which the heterozygous genotype has a higher relative fitness than either the homozygous dominant or homozygous recessive genotype. Loci exhibiting heterozygote advantage are a small minority of loci. [1] The specific case of heterozygote advantage due to a single locus is known as overdominance.
Alternatively, a heterozygote for gene "R" is assumed to be "Rr". The uppercase letter is usually written first. [citation needed] If the trait in question is determined by simple (complete) dominance, a heterozygote will express only the trait coded by the dominant allele, and the trait coded by the recessive allele will not be present.
In medical genetics, compound heterozygosity is the condition of having two or more heterogeneous recessive alleles at a particular locus that can cause genetic disease in a heterozygous state; that is, an organism is a compound heterozygote when it has two recessive alleles for the same gene, but with those two alleles being different from each other (for example, both alleles might be ...
Imprinting is one example of disassortative mating. A model shows that individuals imprint on a genetically transmitted trait during early ontogeny and choosy females later use those parental images as a basis of mate choice. A viability-reducing trait may be maintained even without the fertility cost of same-type matings. [5]
The first uses of test crosses were in Gregor Mendel’s experiments in plant hybridization.While studying the inheritance of dominant and recessive traits in pea plants, he explains that the “signification” (now termed zygosity) of an individual for a dominant trait is determined by the expression patterns of the following generation.
Therefore no trait is purely Mendelian, but many traits are almost entirely Mendelian, including canonical examples, such as those listed below. Purely Mendelian traits are a minority of all traits, since most phenotypic traits exhibit incomplete dominance, codominance, and contributions from many genes.