Search results
Results from the WOW.Com Content Network
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
where the final substitution, N 0 = e C, is obtained by evaluating the equation at t = 0, as N 0 is defined as being the quantity at t = 0. This is the form of the equation that is most commonly used to describe exponential decay. Any one of decay constant, mean lifetime, or half-life is sufficient to characterise the decay.
When an empirical equation of this form is applied to microbial growth, it is sometimes called a Monod equation. Michaelis–Menten kinetics have also been applied to a variety of topics outside of biochemical reactions, [ 14 ] including alveolar clearance of dusts, [ 19 ] the richness of species pools, [ 20 ] clearance of blood alcohol , [ 21 ...
The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting nutrient.
Although growth may initially be exponential, the modelled phenomena will eventually enter a region in which previously ignored negative feedback factors become significant (leading to a logistic growth model) or other underlying assumptions of the exponential growth model, such as continuity or instantaneous feedback, break down.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".
The most important inference derived from the steady state equation and the equation for fractional change over time is that the elimination rate constant (k e) or the sum of rate constants that apply in a model determine the time course for change in mass when a system is perturbed (either by changing the rate of inflow or production, or by ...
If the RGR is constant, i.e., =, a solution to this equation is = Where: S(t) is the final size at time (t). S 0 is the initial size. k is the relative growth rate. A closely related concept is doubling time.