Search results
Results from the WOW.Com Content Network
Hypothesis (d) is also non-parametric but, in addition, it does not even specify the underlying form of the distribution and may now be reasonably termed distribution-free. Notwithstanding these distinctions, the statistical literature now commonly applies the label "non-parametric" to test procedures that we have just termed "distribution-free ...
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics. Nonparametric models differ from parametric models in that the model structure is ...
The last surrogate data methods do not depend on a particular model, nor on any parameters, thus they are non-parametric methods. These surrogate data methods are usually based on preserving the linear structure of the original series (for instance, by preserving the autocorrelation function , or equivalently the periodogram , an estimate of ...
That is, no parametric equation is assumed for the relationship between predictors and dependent variable. Nonparametric regression requires larger sample sizes than regression based on parametric models because the data must supply the model structure as well as the parameter estimates.
Durbin test is a non-parametric statistical test for balanced incomplete designs that reduces to the Friedman test in the case of a complete block design. In the analysis of designed experiments , the Friedman test is the most common non-parametric test for complete block designs.
The Wald–Wolfowitz runs test (or simply runs test), named after statisticians Abraham Wald and Jacob Wolfowitz is a non-parametric statistical test that checks a randomness hypothesis for a two-valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually independent.
Siegel–Tukey test, named after Sidney Siegel and John Tukey, is a non-parametric test which may be applied to data measured at least on an ordinal scale. It tests for differences in scale between two groups. The test is used to determine if one of two groups of data tends to have more widely dispersed values than the other.