Search results
Results from the WOW.Com Content Network
The Parastep's digital design allows a considerable reduction in rate of patient-fatigue by drastically reducing of stimulation pulse-width (100–140 microseconds) and pulse-rate (12–24 per sec.), to result, in walking times of 20–60 minutes and average walking distances of 450 meters per walk, for adequately trained thoracic-level ...
Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass.Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiology (potential beneficial effects, for example in cancer treatment).
California was slated to give a long-awaited raise to health facilities that help quadriplegics and others with serious medical needs, but the passage of Prop. 35 unraveled those plans.
Specific energy absorption rate (SAR) averaged over the whole body or over parts of the body, is defined as the rate at which energy is absorbed per unit mass of body tissue and is expressed in watts per kilogram (W/kg). Whole body SAR is a widely accepted measure for relating adverse thermal effects to RF exposure. [9]
The NRC's definition of dose equivalent is "the product of the absorbed dose in tissue, quality factor, and all other necessary modifying factors at the location of interest." However, it is apparent from their definition of effective dose equivalent that "all other necessary modifying factors" excludes the tissue weighting factor. [17]
Metabolism comprises the processes that the body needs to function. [2] Basal metabolic rate is the amount of energy per unit of time that a person needs to keep the body functioning at rest. Some of those processes are breathing, blood circulation, controlling body temperature, cell growth, brain and nerve function, and contraction of muscles ...
The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.
Tissue-air ratio is defined as the ratio of the dose to water at a given depth to the dose in air measured with a buildup cap: = (,) (,) where D(f,z) is the dose at a given depth z and distance focus-detector f; and D(f,0) is the dose in air (z=0).