enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

  3. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    [3] Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. [2] [4]

  4. Multiply perfect number - Wikipedia

    en.wikipedia.org/wiki/Multiply_perfect_number

    A bi-unitary multi 2-perfect number is naturally called a bi-unitary perfect number, and a bi-unitary multi 3-perfect number is called a bi-unitary triperfect number. A divisor d of a positive integer n is called a bi-unitary divisor of n if the greatest common unitary divisor (gcud) of d and n/d equals 1. This concept is due to D. Surynarayana ...

  5. Euclid–Euler theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid–Euler_theorem

    A perfect number is a natural number that equals the sum of its proper divisors, the numbers that are less than it and divide it evenly (with remainder zero). For instance, the proper divisors of 6 are 1, 2, and 3, which sum to 6, so 6 is perfect. A Mersenne prime is a prime number of the form M p = 2 p − 1, one less than a power of two.

  6. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

  7. Unitary perfect number - Wikipedia

    en.wikipedia.org/wiki/Unitary_perfect_number

    A unitary perfect number is an integer which is the sum of its positive proper unitary divisors, not including the number itself. (A divisor d of a number n is a unitary divisor if d and n/d share no common factors). The number 6 is the only number that is both a perfect number and a unitary perfect number.

  8. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    A harmonic divisor number is a positive integer whose divisors have a harmonic mean that is an integer. The first five of these are 1, 6, 28, 140, and 270. It is not known whether any harmonic divisor numbers (besides 1) are odd, but there are no odd ones less than 10 24. The sum of the reciprocals of the divisors of a perfect number is 2.

  9. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...