enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mohr's circle - Wikipedia

    en.wikipedia.org/wiki/Mohr's_circle

    Stress components on a 2D rotating element. Click to see animation. Example of how stress components vary on the faces (edges) of a rectangular element as the angle of its orientation is varied. Principal stresses occur when the shear stresses simultaneously disappear from all faces. The orientation at which this occurs gives the principal ...

  3. Cauchy stress tensor - Wikipedia

    en.wikipedia.org/wiki/Cauchy_stress_tensor

    Stress components on a 2D rotating element. Example of how stress components vary on the faces (edges) of a rectangular element as the angle of its orientation is varied. Principal stresses occur when the shear stresses simultaneously disappear from all faces. The orientation at which this occurs gives the principal directions.

  4. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    This type of stress may be called (simple) normal stress or uniaxial stress; specifically, (uniaxial, simple, etc.) tensile stress. [13] If the load is compression on the bar, rather than stretching it, the analysis is the same except that the force F and the stress σ {\displaystyle \sigma } change sign, and the stress is called compressive ...

  5. von Mises yield criterion - Wikipedia

    en.wikipedia.org/wiki/Von_Mises_yield_criterion

    As an example, the stress state of a steel beam in compression differs from the stress state of a steel axle under torsion, even if both specimens are of the same material. In view of the stress tensor, which fully describes the stress state, this difference manifests in six degrees of freedom , because the stress tensor has six independent ...

  6. Stress resultants - Wikipedia

    en.wikipedia.org/wiki/Stress_resultants

    Stress resultants are simplified representations of the stress state in structural elements such as beams, plates, or shells. [1] The geometry of typical structural elements allows the internal stress state to be simplified because of the existence of a "thickness'" direction in which the size of the element is much smaller than in other directions.

  7. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    axial stress, a normal stress parallel to the axis of cylindrical symmetry. radial stress , a normal stress in directions coplanar with but perpendicular to the symmetry axis. These three principal stresses- hoop, longitudinal, and radial can be calculated analytically using a mutually perpendicular tri-axial stress system.

  8. Plane stress - Wikipedia

    en.wikipedia.org/wiki/Plane_stress

    Figure 7.1 Plane stress state in a continuum. In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2 ...

  9. Lode coordinates - Wikipedia

    en.wikipedia.org/wiki/Lode_Coordinates

    The Lode coordinates are most easily computed using the mechanics invariants.These invariants are a mixture of the invariants of the Cauchy stress tensor, , and the stress deviator, , and are given by [3]