Search results
Results from the WOW.Com Content Network
anywhere in a tag, for example xsl:value-of.select and xsl:variable.name. name() the name of the tag being processed. Useful if the matching criteria contains |s (pipe symbols). any conditional or match criterion, for example xsl:if.test, xsl:when.test, xsl:template.select and xsl:for-each.select. @ an attribute within the XML.
In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).
In mathematics, economics, and computer science, the stable marriage problem (also stable matching problem) is the problem of finding a stable matching between two equally sized sets of elements given an ordering of preferences for each element. A matching is a bijection from the elements
In decision theory, the weighted sum model (WSM), [1] [2] also called weighted linear combination (WLC) [3] or simple additive weighting (SAW), [4] is the best known and simplest multi-criteria decision analysis (MCDA) / multi-criteria decision making method for evaluating a number of alternatives in terms of a number of decision criteria.
The term decision matrix is used to describe a multiple-criteria decision analysis (MCDA) problem. An MCDA problem, where there are M alternative options and each needs to be assessed on N criteria, can be described by the decision matrix which has N rows and M columns, or M × N elements, as shown in the following table.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
Numerical 3-dimensional matching is an NP-complete decision problem. It is given by three multisets of integers, and , each containing elements, and a bound .The goal is to select a subset of such that every integer in , and occurs exactly once and that for every triple (,,) in the subset + + = holds.
Optimal designs can accommodate multiple types of factors, such as process, mixture, and discrete factors. Designs can be optimized when the design-space is constrained, for example, when the mathematical process-space contains factor-settings that are practically infeasible (e.g. due to safety concerns).