enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy of nucleic acids

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Nucleic acid NMR is the use of nuclear magnetic resonance spectroscopy to obtain information about the structure and dynamics of nucleic acid molecules, such as DNA or RNA. It is useful for molecules of up to 100 nucleotides, and as of 2003, nearly half of all known RNA structures had been determined by NMR spectroscopy.

  3. Crystallography - Wikipedia

    en.wikipedia.org/wiki/Crystallography

    The discovery of X-rays and electrons in the last decade of the 19th century enabled the determination of crystal structures on the atomic scale, which brought about the modern era of crystallography. The first X-ray diffraction experiment was conducted in 1912 by Max von Laue, [7] while electron diffraction was first realized in 1927 in the ...

  4. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A common goal of these investigations is to obtain high resolution 3-dimensional structures of the protein, similar to what can be achieved by X-ray crystallography. In contrast to X-ray crystallography, NMR spectroscopy is usually limited to proteins smaller than 35 kDa, although larger structures have been solved. NMR spectroscopy is often ...

  5. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering, when there is no change in the energy of the waves. The resulting map of the directions of the X-rays far from the sample is called a diffraction pattern.

  6. Nucleic acid structure determination - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure...

    An advantage of cryo-EM over x-ray crystallography is that the samples are preserved in their aqueous solution state and not perturbed by forming a crystal of the sample. One disadvantage, is that it is difficult to resolve nucleic acid or protein structures that are smaller than ~75 kilodaltons , partly due to the difficulty of having enough ...

  7. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Nuclear magnetic resonance crystallography (NMR crystallography) is a method which utilizes primarily NMR spectroscopy to determine the structure of solid materials on the atomic scale. Thus, solid-state NMR spectroscopy would be used primarily, possibly supplemented by quantum chemistry calculations (e.g. density functional theory ), [ 1 ...

  8. Nuclear magnetic resonance spectroscopy of proteins - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    The NMR sample is prepared in a thin-walled glass tube. Protein nuclear magnetic resonance is performed on aqueous samples of highly purified protein. Usually, the sample consists of between 300 and 600 microlitres with a protein concentration in the range 0.1 – 3 millimolar.

  9. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    Women have written many textbooks and research papers in the field of X-ray crystallography. For many years Lonsdale edited the International Tables for Crystallography, which provide information on crystal lattices, symmetry, and space groups, as well as mathematical, physical and chemical data on structures.