Search results
Results from the WOW.Com Content Network
Using a lineage tracing approach followed by Fluorescent-activated cell sorting, miRNA profiling of the FoxD1-derived cells not only comprehensively defined the transcriptional landscape of miRNAs that are critical for vascular development, but also identified key miRNAs that are likely to modulate the renal phenotype in its absence. These ...
The Let-7 microRNA precursor gives rise to let-7, a microRNA (miRNA) involved in control of stem-cell division and differentiation. [1] let-7, short for "lethal-7", was discovered along with the miRNA lin-4 in a study of developmental timing in C. elegans, [2] making these miRNAs the first ever discovered.
Recent studies have shown that the Hth and Tsh which are found to be important in cell survival of the Drosophila anterior optimal disc participate in the regulation of the Bantam miRNA. [2] It is concluded that the miRNA has an important function in the central pacemaker of the Drosophila circadian rhythm clock.
The RNase III Dicer is a critical member of RISC that initiates the RNA interference process by producing double-stranded siRNA or single-stranded miRNA. Enzymatic cleavage of dsRNA within the cell produces the short siRNA fragments of 21-23 nucleotides in length with a two-nucleotide 3' overhang.
A miRNA is expressed from a much longer RNA-coding gene as a primary transcript known as a pri-miRNA which is processed, in the cell nucleus, to a 70-nucleotide stem-loop structure called a pre-miRNA by the microprocessor complex. This complex consists of an RNase III enzyme called Drosha and a dsRNA-binding protein DGCR8.
RNA silencing describes several mechanistically related pathways which are involved in controlling and regulating gene expression. [5] [6] [7] RNA silencing pathways are associated with the regulatory activity of small non-coding RNAs (approximately 20–30 nucleotides in length) that function as factors involved in inactivating homologous sequences, promoting endonuclease activity ...
While miR-125a acts as an oncogenic miRNA in non-blood cancers, its oncogenic functions have been described in cervical cancer, colorectal cancer, nasopharyngeal carcinoma and esophageal carcinomas. [5] On the other hand, high expression of miR-125b was shown to decrease cell proliferation and induces apoptosis.
The miR-17-92 cluster containing miR-19 miRNA family is also involved into control endothelial cell functions and neo-vascularization. MiRNA cluster (miR-17, miR-18, miR-19 and miR-20) increased during the induction of endothelial cell differentiation in embryonic stem cells (tested on murine) or induce pluripotent stem cells.