Search results
Results from the WOW.Com Content Network
Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.
Therefore, the polynomial has a degree of 5, which is the highest degree of any term. To determine the degree of a polynomial that is not in standard form, such as (+) (), one can put it in standard form by expanding the products (by distributivity) and combining the like terms; for example, (+) = is of degree 1, even though each summand has ...
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots. As a cubic polynomial has three roots (not necessarily distinct) by the fundamental theorem of algebra, at least one root must be real.
When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.
By the same reasoning, sin nx is the imaginary part of the polynomial, in which all powers of sin x are odd and thus, if one factor of sin x is factored out, the remaining factors can be replaced to create a (n−1) st-degree polynomial in cos x.
A more general framework where the term 'exponential polynomial' may be found is that of exponential functions on abelian groups. Similarly to how exponential functions on exponential fields are defined, given a topological abelian group G a homomorphism from G to the additive group of the complex numbers is called an additive function, and a homomorphism to the multiplicative group of nonzero ...
Polynomial transformations have been applied to the simplification of polynomial equations for solution, where possible, by radicals. Descartes introduced the transformation of a polynomial of degree d which eliminates the term of degree d − 1 by a translation of the roots. Such a polynomial is termed depressed. This already suffices to solve ...