enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values 0 and 1.

  3. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The relation between scattering and correlation functions is the LSZ-theorem: The scattering amplitude for n particles to go to m particles in a scattering event is the given by the sum of the Feynman diagrams that go into the correlation function for n + m field insertions, leaving out the propagators for the external legs.

  4. Dirac equation in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation_in_curved...

    We use a set of vierbein or frame fields {} = {,,,}, which are a set of vector fields (which are not necessarily defined globally on ).Their defining equation is =. The vierbein defines a local rest frame, allowing the constant Gamma matrices to act at each spacetime point.

  5. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  6. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  7. Delta-functor - Wikipedia

    en.wikipedia.org/wiki/Delta-functor

    For each short exact sequence as above, there is a long exact sequence; For each morphism of short exact sequences and for each non-negative n, the induced square . is commutative (the δ n on the top is that corresponding to the short exact sequence of M's whereas the one on the bottom corresponds to the short exact sequence of N's).

  8. Delta potential - Wikipedia

    en.wikipedia.org/wiki/Delta_potential

    The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.

  9. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    The Kronecker delta has the so-called sifting property that for : = =. and if the integers are viewed as a measure space, endowed with the counting measure, then this property coincides with the defining property of the Dirac delta function () = (), and in fact Dirac's delta was named after the Kronecker delta because of this analogous property ...