Search results
Results from the WOW.Com Content Network
Antimatter may exist in relatively large amounts in far-away galaxies due to cosmic inflation in the primordial time of the universe. Antimatter galaxies, if they exist, are expected to have the same chemistry and absorption and emission spectra as normal-matter galaxies, and their astronomical objects would be observationally identical, making ...
Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges. [3] The Big Bang should have produced equal amounts of matter and antimatter. Since this does not seem to have been ...
It is not yet understood why the universe has more matter than antimatter. [32] It is generally assumed that when the universe was young and very hot it was in statistical equilibrium and contained equal numbers of baryons and antibaryons. However, observations suggest that the universe, including its most distant parts, is made almost entirely ...
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
The observable universe contains as many as an estimated 2 trillion galaxies [95] [96] [97] and, overall, as many as an estimated 10 24 stars [98] [99] – more stars (and earth-like planets) than all the grains of beach sand on planet Earth; [100] [101] [102] but less than the total number of atoms estimated in the universe as 10 82; [103] and ...
Wasp 17b -- The biggest planet discovered by humans is an exoplanet some 1,000 light-years away that can be found in the constellation of Scorpius. It's more than 173,000 miles in diameter.
Since observations indicate the universe is almost flat, [77] [78] [79] it is expected the total energy density of everything in the universe should sum to 1 (Ω tot ≈ 1). The measured dark energy density is Ω Λ ≈ 0.690 ; the observed ordinary (baryonic) matter energy density is Ω b ≈ 0.0482 and the energy density of radiation is ...
In the early universe, it is thought that matter and antimatter were equally represented, and the disappearance of antimatter requires an asymmetry in physical laws called CP (charge–parity) symmetry violation, which can be obtained from the Standard Model, [50] but at this time the apparent asymmetry of matter and antimatter in the visible ...