enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    Empirical risk minimization for a classification problem with a 0-1 loss function is known to be an NP-hard problem even for a relatively simple class of functions such as linear classifiers. [5] Nevertheless, it can be solved efficiently when the minimal empirical risk is zero, i.e., data is linearly separable .

  3. Vapnik–Chervonenkis theory - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis_theory

    In words the VC inequality is saying that as the sample increases, provided that has a finite VC dimension, the empirical 0/1 risk becomes a good proxy for the expected 0/1 risk. Note that both RHS of the two inequalities will converge to 0, provided that S ( F , n ) {\displaystyle S({\mathcal {F}},n)} grows polynomially in n .

  4. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    In others words, the sample complexity (,,) defines the rate of consistency of the algorithm: given a desired accuracy and confidence , one needs to sample (,,) data points to guarantee that the risk of the output function is within of the best possible, with probability at least .

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Neural networks are typically trained through empirical risk minimization.This method is based on the idea of optimizing the network's parameters to minimize the difference, or empirical risk, between the predicted output and the actual target values in a given dataset. [4]

  6. Representer theorem - Wikipedia

    en.wikipedia.org/wiki/Representer_theorem

    For computer science, in statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk functional defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.

  7. Structural risk minimization - Wikipedia

    en.wikipedia.org/wiki/Structural_risk_minimization

    Structural risk minimization (SRM) is an inductive principle of use in machine learning. Commonly in machine learning, a generalized model must be selected from a finite data set, with the consequent problem of overfitting – the model becoming too strongly tailored to the particularities of the training set and generalizing poorly to new data ...

  8. SlideShare - Wikipedia

    en.wikipedia.org/wiki/SlideShare

    SlideShare is an American hosting service, now owned by Scribd, for professional content including presentations, infographics, documents, and videos. Users can upload files privately or publicly in PowerPoint, Word, or PDF format. Content can then be viewed on the site itself, on mobile devices or embedded on other sites.

  9. Empirical likelihood - Wikipedia

    en.wikipedia.org/wiki/Empirical_likelihood

    An empirical likelihood ratio function is defined and used to obtain confidence intervals parameter of interest θ similar to parametric likelihood ratio confidence intervals. [7] [8] Let L(F) be the empirical likelihood of function , then the ELR would be: = / (). Consider sets of the form