Search results
Results from the WOW.Com Content Network
Gauss's original statement of the Theorema Egregium, translated from Latin into English. The theorem is "remarkable" because the definition of Gaussian curvature makes ample reference to the specific way the surface is embedded in 3-dimensional space, and it is quite surprising that the result does not depend on its embedding.
Gauss's Theorema egregium (Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the first fundamental form and expressed via the first fundamental form and its partial derivatives of first and second ...
Gauss's original statement of the Theorema Egregium, translated from Latin into English. Gauss's Theorema Egregium , the "Remarkable Theorem", shows that the Gaussian curvature of a surface can be computed solely in terms of the metric and is thus an intrinsic invariant of the surface, independent of any isometric embedding in E 3 and unchanged ...
The second fundamental form of a parametric surface S in R 3 was introduced and studied by Gauss. First suppose that the surface is the graph of a twice continuously differentiable function, z = f(x,y), and that the plane z = 0 is tangent to the surface at the origin. Then f and its partial derivatives with respect to x and y vanish at (0,0).
The Gauss formula [6] now asserts that is the Levi-Civita connection for M, and is a symmetric vector-valued form with values in the normal bundle. It is often referred to as the second fundamental form. An immediate corollary is the Gauss equation for the curvature tensor.
Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.
It is named after the mathematician Carl Friedrich Gauss. The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".
By Gauss's Theorema Egregium, an equal-area projection cannot be conformal. This implies that an equal-area projection inevitably distorts shapes. This implies that an equal-area projection inevitably distorts shapes.