Search results
Results from the WOW.Com Content Network
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
Since the diffusion model is a general method for modelling probability distributions, if one wants to model a distribution over images, one can first encode the images into a lower-dimensional space by an encoder, then use a diffusion model to model the distribution over encoded images.
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom.
is the Diffusion coefficient [2] and is the Source term. [3] A portion of the two dimensional grid used for Discretization is shown below: Graph of 2 dimensional plot. In addition to the east (E) and west (W) neighbors, a general grid node P, now also has north (N) and south (S) neighbors.
Logical data model, a representation of an organization's data, organized in terms of entities and relationships; Logical Disk Manager; Local Data Manager; LTSP Display Manager, an X display manager for Linux Terminal Server Project; Latent diffusion model, in machine learning; Latitude dependent mantle, a widespread layer of ice-rich material ...
In probability theory and statistics, diffusion processes are a class of continuous-time Markov process with almost surely continuous sample paths. Diffusion process is stochastic in nature and hence is used to model many real-life stochastic systems.
In the paper [6] Nadler et al. showed how to design a kernel that reproduces the diffusion induced by a Fokker–Planck equation. They also explained that, when the data approximate a manifold, one can recover the geometry of this manifold by computing an approximation of the Laplace–Beltrami operator. This computation is completely ...
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...