enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slip ratio - Wikipedia

    en.wikipedia.org/wiki/Slip_ratio

    Slip ratio is a means of calculating and expressing the slipping behavior of the wheel of an automobile.It is of fundamental importance in the field of vehicle dynamics, as it allows to understand the relationship between the deformation of the tire and the longitudinal forces (i.e. the forces responsible for forward acceleration and braking) acting upon it.

  3. Slip (vehicle dynamics) - Wikipedia

    en.wikipedia.org/wiki/Slip_(vehicle_dynamics)

    In (automotive) vehicle dynamics, slip is the relative motion between a tire and the road surface it is moving on. This slip can be generated either by the tire's rotational speed being greater or less than the free-rolling speed (usually described as percent slip), or by the tire's plane of rotation being at an angle to its direction of motion (referred to as slip angle).

  4. Slip angle - Wikipedia

    en.wikipedia.org/wiki/Slip_angle

    The ratios between the slip angles of the front and rear axles (a function of the slip angles of the front and rear tires respectively) will determine the vehicle's behavior in a given turn. If the ratio of front to rear slip angles is greater than 1:1, the vehicle will tend to understeer, while a ratio of less than 1:1 will produce oversteer. [2]

  5. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection must be considered for the purpose of the structure. When designing a steel frame to hold a glazed panel, one allows only minimal deflection to prevent fracture of the glass. The deflected shape of a beam can be represented by the moment diagram, integrated (twice, rotated and translated to enforce support conditions).

  6. Schmid's law - Wikipedia

    en.wikipedia.org/wiki/Schmid's_Law

    Schmid's Law states that the critically resolved shear stress (τ) is equal to the stress applied to the material (σ) multiplied by the cosine of the angle with the vector normal to the glide plane (φ) and the cosine of the angle with the glide direction (λ). Which can be expressed as: [2] =

  7. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...

  8. Tire load sensitivity - Wikipedia

    en.wikipedia.org/wiki/Tire_load_sensitivity

    Production car tires typically develop this maximum lateral force, or cornering force, at a slip angle of 6-10 degrees, although this angle increases as the vertical load on the tire increases. [ 1 ] Formula 1 car tires may reach a peak side force at 3 degrees [ 2 ]

  9. Self aligning torque - Wikipedia

    en.wikipedia.org/wiki/Self_aligning_torque

    Even if the slip angle and camber angle are zero, and the road is flat, this torque will still be generated due to asymmetries in the tire's construction and the asymmetrical shape and pressure distribution of the contact patch. Typically for a production tire this torque reaches a maximum at 2–4 degrees of slip (this figure depends on many ...