enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map. It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [ 1 ] where Laurens van der Maaten and Hinton proposed the t ...

  3. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  4. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    Here, a subjective judgment about the correspondence can be made (see perceptual mapping). Test the results for reliability and validity – Compute R-squared to determine what proportion of variance of the scaled data can be accounted for by the MDS procedure. An R-square of 0.6 is considered the minimum acceptable level.

  5. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The most used such package is mclust, [35] [36] which is used to cluster continuous data and has been downloaded over 8 million times. [37] The poLCA package [38] clusters categorical data using the latent class model. The clustMD package [25] clusters mixed data, including continuous, binary, ordinal and nominal variables.

  6. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    These clusters then could be visualized as a two-dimensional "map" such that observations in proximal clusters have more similar values than observations in distal clusters. This can make high-dimensional data easier to visualize and analyze.

  7. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    In this resulting algorithm, the threshold parameter is calculated from the maximum cluster radius and the minimum distance between clusters, which are often known. This method proved to be efficient for data sets of tens of thousands of clusters. If going beyond that amount, a supercluster splitting problem is introduced.

  8. Elbow method (clustering) - Wikipedia

    en.wikipedia.org/wiki/Elbow_method_(clustering)

    The number of clusters chosen should therefore be 4. In cluster analysis, the elbow method is a heuristic used in determining the number of clusters in a data set. The method consists of plotting the explained variation as a function of the number of clusters and picking the elbow of the curve as the number of clusters to

  9. HCS clustering algorithm - Wikipedia

    en.wikipedia.org/wiki/HCS_clustering_algorithm

    It does not make any prior assumptions on the number of the clusters. This algorithm was published by Erez Hartuv and Ron Shamir in 2000. The HCS algorithm gives a clustering solution, which is inherently meaningful in the application domain, since each solution cluster must have diameter 2 while a union of two solution clusters will have ...