Search results
Results from the WOW.Com Content Network
Methanation is the conversion of carbon monoxide and carbon dioxide (CO x) to methane (CH 4) through hydrogenation. The methanation reactions of CO x were first discovered by Sabatier and Senderens in 1902. [1] CO x methanation has many practical applications.
Strenuous efforts have been made to elucidate the mechanisms of these methane-converting enzymes, which would enable their catalysis to be replicated in vitro. [11] Biodiesel can be made from CO 2 using the microbes Moorella thermoacetica and Yarrowia lipolytica. This process is known as biological gas-to-liquids. [12]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
In industrial chemistry, coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen (H 2), carbon dioxide (CO 2), methane (CH 4), and water vapour (H 2 O)—from coal and water, air and/or oxygen. Historically, coal was gasified to produce coal gas, also known as "town gas".
Venenivibrio stagnispumantis gains energy by oxidizing hydrogen gas.. In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules (usually carbon dioxide or methane) and nutrients into organic matter using the oxidation of inorganic compounds (e.g., hydrogen gas, hydrogen sulfide) or ferrous ions as a source of energy, rather than sunlight, as in ...
Any mixture of methane and air will therefore lie on the straight line between pure methane and pure air – this is shown as the blue air-line. The upper and lower flammability limits of methane in air are located on this line, as shown (labelled UEL and LEL, respectively). The stoichiometric combustion of methane is: CH 4 + 2O 2 → CO 2 + 2H ...