Search results
Results from the WOW.Com Content Network
Bivariegated graph; Cage (graph theory) Cayley graph; Circle graph; Clique graph; Cograph; Common graph; Complement of a graph; Complete graph; Cubic graph; Cycle graph; De Bruijn graph; Dense graph; Dipole graph; Directed acyclic graph; Directed graph; Distance regular graph; Distance-transitive graph; Edge-transitive graph; Interval graph ...
A distance-transitive graph is a graph such that every pair of vertices may be mapped by an automorphism into any other pair of vertices that are the same distance apart. A semi-symmetric graph is a graph that is edge-transitive but not vertex-transitive. A half-transitive graph is a graph that is vertex-transitive and edge-transitive but not ...
In graph theory, a graph is a pairwise compatibility graph (PCG) if there exists a tree and two non-negative real numbers < such that each node ′ of has a one-to-one mapping with a leaf node of such that two nodes ′ and ′ are adjacent in if and only if the distance between and are in the interval [,].
A set of graphs isomorphic to each other is called an isomorphism class of graphs. The question of whether graph isomorphism can be determined in polynomial time is a major unsolved problem in computer science, known as the graph isomorphism problem. [1] [2] The two graphs shown below are isomorphic, despite their different looking drawings.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Operations between graphs include evaluating the direction of a subsumption relationship between two graphs, if any, and computing graph unification. The unification of two argument graphs is defined as the most general graph (or the computation thereof) that is consistent with (i.e. contains all of the information in) the inputs, if such a ...
A line graph has an articulation point if and only if the underlying graph has a bridge for which neither endpoint has degree one. [2] For a graph G with n vertices and m edges, the number of vertices of the line graph L(G) is m, and the number of edges of L(G) is half the sum of the squares of the degrees of the vertices in G, minus m. [6]
Two graphs G and H are homomorphically equivalent if G → H and H → G. [4] The maps are not necessarily surjective nor injective. For instance, the complete bipartite graphs K 2,2 and K 3,3 are homomorphically equivalent: each map can be defined as taking the left (resp. right) half of the domain graph and mapping to just one vertex in the left (resp. right) half of the image graph.