Search results
Results from the WOW.Com Content Network
Regression analysis, in the context of sensitivity analysis, involves fitting a linear regression to the model response and using standardized regression coefficients as direct measures of sensitivity. The regression is required to be linear with respect to the data (i.e. a hyperplane, hence with no quadratic terms, etc., as regressors) because ...
In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...
Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [1] [2] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.
[1] [2] In biomedical engineering, sensitivity analysis can be used to determine system dynamics in ODE-based kinetic models. Parameters corresponding to stages of differentiation can be varied to determine which parameter is most influential on cell fate.
One may wish to compute several values of ^ from several samples, and average them, to calculate an empirical approximation of [^], but this is impossible when there are no "other samples" when the entire set of available observations ,..., was used to calculate ^. In this kind of situation the jackknife resampling technique may be of help.
The one-factor-at-a-time method, [1] also known as one-variable-at-a-time, OFAT, OF@T, OFaaT, OVAT, OV@T, OVaaT, or monothetic analysis is a method of designing experiments involving the testing of factors, or causes, one at a time instead of multiple factors simultaneously.
The form of Eq(12) is usually the goal of a sensitivity analysis, since it is general, i.e., not tied to a specific set of parameter values, as was the case for the direct-calculation method of Eq(3) or (4), and it is clear basically by inspection which parameters have the most effect should they have systematic errors.
IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.