enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.

  3. Trace class - Wikipedia

    en.wikipedia.org/wiki/Trace_class

    In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class ...

  4. Trace inequality - Wikipedia

    en.wikipedia.org/wiki/Trace_inequality

    Given a function :, the associated trace function on is given by ⁡ = (), where has eigenvalues and stands for a trace of the operator. Convexity and monotonicity of the trace function [ edit ]

  5. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.

  6. Partial trace - Wikipedia

    en.wikipedia.org/wiki/Partial_trace

    A mixed state is described by a density matrix ρ, that is a non-negative trace-class operator of trace 1 on the tensor product . The partial trace of ρ with respect to the system B, denoted by , is called the reduced state of ρ on system A.

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The trace of a rotation matrix is equal to the sum of its eigenvalues. For n = 2, a rotation by angle θ has trace 2 cos θ. For n = 3, a rotation around any axis by angle θ has trace 1 + 2 cos θ. For n = 4, and the trace is 2(cos θ + cos φ), which becomes 4 cos θ for an isoclinic rotation.

  8. Density matrix - Wikipedia

    en.wikipedia.org/wiki/Density_matrix

    The density matrix is a representation of a linear operator called the density operator. The density matrix is obtained from the density operator by a choice of an orthonormal basis in the underlying space. [2] In practice, the terms density matrix and density operator are often used interchangeably.

  9. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖} where denotes the supremum.