Search results
Results from the WOW.Com Content Network
It also details which transmitted bit is covered by which parity bit by reading the column. For example, d 1 is covered by p 1 and p 2 but not p 3 This table will have a striking resemblance to the parity-check matrix (H) in the next section. Furthermore, if the parity columns in the above table were removed
The JS++ programming language is able to analyze if an array index or map key is out-of-bounds at compile time using existent types, which is a nominal type describing whether the index or key is within-bounds or out-of-bounds and guides code generation. Existent types have been shown to add only 1ms overhead to compile times.
Say we are searching for a service A whose id hashes to bits 0,1, and 3 (pattern 11010). Let n1 node to be the starting point. First, we check whether service A is offered by n1 by checking its local filter. Since the patterns don't match, we check the attenuated Bloom filter in order to determine which node should be the next hop.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code, also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent.
In contrast, convolutional codes are typically decoded using soft-decision algorithms like the Viterbi, MAP or BCJR algorithms, which process (discretized) analog signals, and which allow for much higher error-correction performance than hard-decision decoding. Nearly all classical block codes apply the algebraic properties of finite fields ...
Map functions can be and often are defined in terms of a fold such as foldr, which means one can do a map-fold fusion: foldr f z . map g is equivalent to foldr (f . g) z . The implementation of map above on singly linked lists is not tail-recursive , so it may build up a lot of frames on the stack when called with a large list.
A bilinear map is a function: such that for all , the map (,) is a linear map from to , and for all , the map (,) is a linear map from to . In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.