Search results
Results from the WOW.Com Content Network
An alternative approach (Hewitt & Stromberg 1965) is to define the Lebesgue–Stieltjes integral as the Daniell integral that extends the usual Riemann–Stieltjes integral. Let g be a non-decreasing right-continuous function on [a, b], and define I( f ) to be the Riemann–Stieltjes integral
Henri Léon Lebesgue ForMemRS [1] (French: [ɑ̃ʁi leɔ̃ ləbɛɡ]; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis.
The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions. The Lebesgue integral is more general than the Riemann integral , which it largely replaced in mathematical analysis since the first half of the 20th century.
In mathematics, the Daniell integral is a type of integration that generalizes the concept of more elementary versions such as the Riemann integral to which students are typically first introduced. One of the main difficulties with the traditional formulation of the Lebesgue integral is that it requires the initial development of a workable ...
The Laplace–Stieltjes transform of a real-valued function g is given by a Lebesgue–Stieltjes integral of the form ()for s a complex number.As with the usual Laplace transform, one gets a slightly different transform depending on the domain of integration, and for the integral to be defined, one also needs to require that g be of bounded variation on the region of integration.
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .
Thomas Joannes Stieltjes (/ ˈ s t iː l tʃ ə z / STEEL-chəz, [1] Dutch: [ˈtoːmɑ ˈstiltɕəs]; 29 December 1856 – 31 December 1894) was a Dutch mathematician. He was a pioneer in the field of moment problems and contributed to the study of continued fractions .
The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of ...