Search results
Results from the WOW.Com Content Network
Construct an ambiguous form (a, b, c) that is an element f ∈ G Δ of order dividing 2 to obtain a coprime factorization of the largest odd divisor of Δ in which Δ = −4ac or Δ = a(a − 4c) or Δ = (b − 2a)(b + 2a). If the ambiguous form provides a factorization of n then stop, otherwise find another ambiguous form until the ...
If a number x is congruent to 1 modulo a factor of n, then the gcd(x − 1, n) will be divisible by that factor. The idea is to make the exponent a large multiple of p − 1 by making it a number with very many prime factors; generally, we take the product of all prime powers less than some limit B.
An unpublished computational program written in Pascal called Abra inspired this open-source software. Abra was originally designed for physicists to compute problems present in quantum mechanics. Kespers Peeters then decided to write a similar program in C computing language rather than Pascal, which he renamed Cadabra. However, Cadabra has ...
The following is a list of all 52 currently known (as of January 2025) Mersenne primes and corresponding perfect numbers, along with their exponents p. The largest 18 of these have been discovered by the distributed computing project Great Internet Mersenne Prime Search , or GIMPS; their discoverers are listed as "GIMPS / name ", where the name ...
where p ∈ Z[X] and c ∈ Z: it suffices to take for c a multiple of all denominators of the coefficients of q (for example their product) and p = cq. The content of q is defined as: = (), and the primitive part of q is that of p. As for the polynomials with integer coefficients, this defines a factorization into a rational number and a ...
the sequence of exponents must be non-increasing, that is ; otherwise, by exchanging two exponents we would again get a smaller number than n with the same number of divisors (for instance 18 = 2 1 × 3 2 may be replaced with 12 = 2 2 × 3 1; both have six divisors).
Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b). In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.