Search results
Results from the WOW.Com Content Network
Behavior when the collection is empty varies – most often this yields an underflow error, identically to a pop on an empty collection, but some implementations provide a function which instead simply returns (without error), essentially implementing if isempty then return, else peek. This behavior can be axiomatized in various ways.
The dynamic array approach uses a variant of a dynamic array that can grow from both ends, sometimes called array deques. These array deques have all the properties of a dynamic array, such as constant-time random access , good locality of reference , and inefficient insertion/removal in the middle, with the addition of amortized constant-time ...
This is still the conceptually simplest way to construct a queue in a high-level language, but it does admittedly slow things down a little, because the array indices must be compared to zero and the array size, which is comparable to the time taken to check whether an array index is out of bounds, which some languages do, but this will ...
is_empty: check whether the queue has no elements. insert_with_priority: add an element to the queue with an associated priority. pull_highest_priority_element: remove the element from the queue that has the highest priority, and return it. This is also known as "pop_element(Off)", "get_maximum_element" or "get_front(most)_element".
Should this be a concern, macros are available [3] to compute the minimum size while ensuring that the compiler's padding is not disrupted. As the array may start in the padding before the end of the structure, its content should always be accessed via indexing ( arr[i] ) or offsetof , not sizeof .
It consists of an array A of container data structures; in most sources these containers are doubly linked lists but they could alternatively be dynamic arrays [3] or dynamic sets. The container in the p th array cell A[p] stores the collection of elements whose priority is p. A bucket queue can handle the following operations:
In object-oriented computer programming, a null object is an object with no referenced value or with defined neutral (null) behavior.The null object design pattern, which describes the uses of such objects and their behavior (or lack thereof), was first published as "Void Value" [1] and later in the Pattern Languages of Program Design book series as "Null Object".
In computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking).