enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank of a group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_a_group

    The rank of a symmetry group is closely related to the complexity of the object (a molecule, a crystal structure) being under the action of the group. If G is a crystallographic point group, then rank(G) is up to 3. [9] If G is a wallpaper group, then rank(G) = 2 to 4. The only wallpaper-group type of rank 4 is p2mm. [10]

  3. Thompson groups - Wikipedia

    en.wikipedia.org/wiki/Thompson_groups

    The groups T and V are (rare) examples of infinite but finitely-presented simple groups. The group F is not simple but its derived subgroup [F,F] is and the quotient of F by its derived subgroup is the free abelian group of rank 2. F is totally ordered, has exponential growth, and does not contain a subgroup isomorphic to the free group of rank 2.

  4. Group (periodic table) - Wikipedia

    en.wikipedia.org/wiki/Group_(periodic_table)

    In the periodic table of the elements, each column is a group. In chemistry, a group (also known as a family) [1] is a column of elements in the periodic table of the chemical elements. There are 18 numbered groups in the periodic table; the 14 f-block columns, between groups 2 and 3, are not numbered.

  5. Character table - Wikipedia

    en.wikipedia.org/wiki/Character_table

    The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).

  6. Rank of an abelian group - Wikipedia

    en.wikipedia.org/wiki/Rank_of_an_abelian_group

    The group Q of rational numbers has rank 1. Torsion-free abelian groups of rank 1 are realized as subgroups of Q and there is a satisfactory classification of them up to isomorphism. By contrast, there is no satisfactory classification of torsion-free abelian groups of rank 2. [2] Rank is additive over short exact sequences: if

  7. CA-group - Wikipedia

    en.wikipedia.org/wiki/CA-group

    Every abelian group is a CA-group, and a group with a non-trivial center is a CA-group if and only if it is abelian. The finite CA-groups are classified: the solvable ones are semidirect products of abelian groups by cyclic groups such that every non-trivial element acts fixed-point-freely and include groups such as the dihedral groups of order 4k+2, and the alternating group on 4 points of ...

  8. Simple group - Wikipedia

    en.wikipedia.org/wiki/Simple_group

    The classification of nonabelian simple groups is far less trivial. The smallest nonabelian simple group is the alternating group of order 60, and every simple group of order 60 is isomorphic to . [2] The second smallest nonabelian simple group is the projective special linear group PSL(2,7) of order 168, and every simple group of order 168 is ...

  9. Torsion-free abelian group - Wikipedia

    en.wikipedia.org/wiki/Torsion-free_abelian_group

    A non-finitely generated countable example is given by the additive group of the polynomial ring [] (the free abelian group of countable rank). More complicated examples are the additive group of the rational field Q {\displaystyle \mathbb {Q} } , or its subgroups such as Z [ p − 1 ] {\displaystyle \mathbb {Z} [p^{-1}]} (rational numbers ...