Search results
Results from the WOW.Com Content Network
Carborane acids H(CXB 11 Y 5 Z 6) (X, Y, Z = H, Alk, F, Cl, Br, CF 3) are a class of superacids, [1] some of which are estimated to be at least one million times stronger than 100% pure sulfuric acid in terms of their Hammett acidity function values (H 0 ≤ –18) and possess computed pK a values well below –20, establishing them as some of the strongest known Brønsted acids.
A strong superacid of this kind is fluoroantimonic acid. Another group of superacids, the carborane acid group, contains some of the strongest known acids. Finally, when treated with anhydrous acid, zeolites (microporous aluminosilicate minerals) will contain superacidic sites within their pores.
The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase.The (reportedly) strongest known base is the ortho-diethynylbenzene dianion (E pa = 1843 kJ/mol), [3] followed by the methanide anion (E pa = 1743 kJ/mol) and the hydride ion (E pa = 1675 kJ/mol), [4] making methane the weakest proton acid [5] in the gas phase, followed by dihydrogen.
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...
Caubère defines superbases as "bases resulting from a mixing of two (or more) bases leading to new basic species possessing inherent new properties. The term superbase does not mean a base is thermodynamically and/or kinetically stronger than another, instead it means that a basic reagent is created by combining the characteristics of several ...
A Lewis base is often a Brønsted–Lowry base as it can donate a pair of electrons to H +; [11] the proton is a Lewis acid as it can accept a pair of electrons. The conjugate base of a Brønsted–Lowry acid is also a Lewis base as loss of H + from the acid leaves those electrons which were used for the A—H bond as a lone pair on the ...
H 2 O is a base because it accepts a proton from CH 3 COOH and becomes its conjugate acid, the hydronium ion, (H 3 O +). [9] The reverse of an acid–base reaction is also an acid–base reaction, between the conjugate acid of the base in the first reaction and the conjugate base of the acid.
Its conjugate base is the acetate ion with K b = 10 −14 /K a = 5.7 x 10 −10 (from the relationship K a × K b = 10 −14), which certainly does not correspond to a strong base. The conjugate of a weak acid is often a weak base and vice versa.