Search results
Results from the WOW.Com Content Network
In computer science, multiple buffering is the use of more than one buffer to hold a block of data, so that a "reader" will see a complete (though perhaps old) version of the data instead of a partially updated version of the data being created by a "writer". It is very commonly used for computer display images.
In computer science, a data buffer (or just buffer) is a region of memory used to store data temporarily while it is being moved from one place to another. Typically, the data is stored in a buffer as it is retrieved from an input device (such as a microphone) or just before it is sent to an output device (such as speakers); however, a buffer may be used when data is moved between processes ...
Basic, in IBM terminology, indicates a lower-level access method that deals with data sets in terms of physical blocks and does not provide either read-ahead, called anticipatory buffering, or synchronization — that is, the user program has to explicitly wait for completion of each input/output event. [2]: p.31
In programming and information security, a buffer overflow or buffer overrun is an anomaly whereby a program writes data to a buffer beyond the buffer's allocated memory, overwriting adjacent memory locations. Buffers are areas of memory set aside to hold data, often while moving it from one section of a program to another, or between programs.
Representation of a FIFO queue. In computing and in systems theory, first in, first out (the first in is the first out), acronymized as FIFO, is a method for organizing the manipulation of a data structure (often, specifically a data buffer) where the oldest (first) entry, or "head" of the queue, is processed first.
The memory data register is half of a minimal interface between a microprogram and computer storage; the other half is a memory address register (MAR). During the read/write phase, the Control Unit generates control signals that direct the memory controller to fetch or store data.
It supports much more complex pipeline structures than Unix shells, with steps taking multiple input streams and producing multiple output streams. (Such functionality is supported by the Unix kernel, but few programs use it as it makes for complicated syntax and blocking modes, although some shells do support it via arbitrary file descriptor ...
Each host device has at least one swap chain assigned to it, and others may be created by the client application. [1] The API provides three methods of swapping: copy, discard, and flip. When the SwapChain is set to flip, the screenbuffer is copied onto the last backbuffer, then all the existing backbuffers are copied forward in the chain.