Search results
Results from the WOW.Com Content Network
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Archaeological materials, such as bone, organic residues, hair, or sea shells, can serve as substrates for isotopic analysis. Carbon, nitrogen and zinc isotope ratios are used to investigate the diets of past people; these isotopic systems can be used with others, such as strontium or oxygen, to answer questions about population movements and cultural interactions, such as trade.
They have shorter half-lives than primordial radionuclides. They arise in the decay chain of the primordial isotopes thorium-232, uranium-238, and uranium-235. Examples include the natural isotopes of polonium and radium. Cosmogenic isotopes, such as carbon-14, are present because they are continually being formed in the atmosphere due to ...
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
In contrast, the proton numbers for which there are no stable isotopes are 43, 61, and 83 or more (83, 90, 92, and perhaps 94 have primordial radionuclides). [3] This is related to nuclear magic numbers , the number of nucleons forming complete shells within the nucleus, e.g. 2, 8, 20, 28, 50, 82, and 126.
Carbon (6 C) has 14 known isotopes, from 8 C to 20 C as well as 22 C, of which 12 C and 13 C are stable.The longest-lived radioisotope is 14 C, with a half-life of 5.70(3) × 10 3 years. . This is also the only carbon radioisotope found in nature, as trace quantities are formed cosmogenically by the reactio
Isotopes of a chemical element differ only in the mass number. For example, the isotopes of hydrogen can be written as 1 H, 2 H and 3 H, with the mass number superscripted to the left. When the atomic nucleus of an isotope is unstable, compounds containing this isotope are radioactive. Tritium is an example of a radioactive isotope.
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.