enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantification (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Quantification_(machine...

    In machine learning and data mining, quantification (variously called learning to quantify, or supervised prevalence estimation, or class prior estimation) is the task of using supervised learning in order to train models (quantifiers) that estimate the relative frequencies (also known as prevalence values) of the classes of interest in a sample of unlabelled data items.

  3. Approximate entropy - Wikipedia

    en.wikipedia.org/wiki/Approximate_entropy

    Lower computational demand. ApEn can be designed to work for small data samples (< points) and can be applied in real time. Less effect from noise. If data is noisy, the ApEn measure can be compared to the noise level in the data to determine what quality of true information may be present in the data.

  4. Conformal prediction - Wikipedia

    en.wikipedia.org/wiki/Conformal_prediction

    The conformal prediction first arose in a collaboration between Gammerman, Vovk, and Vapnik in 1998; [1] this initial version of conformal prediction used what are now called E-values though the version of conformal prediction best known today uses p-values and was proposed a year later by Saunders et al. [7] Vovk, Gammerman, and their students and collaborators, particularly Craig Saunders ...

  5. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The entropy rate of a data source is the average number of bits per symbol needed to encode it. Shannon's experiments with human predictors show an information rate between 0.6 and 1.3 bits per character in English; [21] the PPM compression algorithm can achieve a compression ratio of 1.5 bits per character in English text.

  6. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    ID3 is harder to use on continuous data than on factored data (factored data has a discrete number of possible values, thus reducing the possible branch points). If the values of any given attribute are continuous , then there are many more places to split the data on this attribute, and searching for the best value to split by can be time ...

  7. Analytics - Wikipedia

    en.wikipedia.org/wiki/Analytics

    Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.

  8. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]

  9. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Uncertainty quantification (UQ) is the science of quantitative characterization and estimation of uncertainties in both computational and real world applications. It tries to determine how likely certain outcomes are if some aspects of the system are not exactly known.