Search results
Results from the WOW.Com Content Network
A relation is strongly connected if, and only if, it is connected and reflexive. A relation is equal to its converse if, and only if, it is symmetric. A relation is connected if, and only if, its complement is anti-symmetric. A relation is strongly connected if, and only if, its complement is asymmetric. [21]
A pattern is a regularity in the world, in human-made design, [1] or in abstract ideas. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeated like a wallpaper design. Any of the senses may directly observe patterns.
The Principles and Standards for School Mathematics was developed by the NCTM. The NCTM's stated intent was to improve mathematics education. The contents were based on surveys of existing curriculum materials, curricula and policies from many countries, educational research publications, and government agencies such as the U.S. National Science Foundation. [3]
The pattern obtained by coloring only the odd numbers in Pascal's triangle closely resembles the fractal known as the Sierpinski triangle. This resemblance becomes increasingly accurate as more rows are considered; in the limit, as the number of rows approaches infinity, the resulting pattern is the Sierpinski triangle, assuming a fixed perimeter.
In mathematics, the category Rel has the class of sets as objects and binary relations as morphisms. A morphism (or arrow) R : A → B in this category is a relation between the sets A and B, so R ⊆ A × B. The composition of two relations R: A → B and S: B → C is given by (a, c) ∈ S o R ⇔ for some b ∈ B, (a, b) ∈ R and (b, c) ∈ ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
Humans, as well as some other animals, find symmetric patterns to be more beautiful. [201] Mathematically, the symmetries of an object form a group known as the symmetry group . [ 202 ] For example, the group underlying mirror symmetry is the cyclic group of two elements, Z / 2 Z {\displaystyle \mathbb {Z} /2\mathbb {Z} } .