Search results
Results from the WOW.Com Content Network
In botany, a sporophyll is a leaf that bears sporangia. Both microphylls and megaphylls can be sporophylls. In heterosporous plants, sporophylls (whether they are microphylls or megaphylls) bear either megasporangia and thus are called megasporophylls , or microsporangia and are called microsporophylls .
Lignin is present in all vascular plants, but not in bryophytes, supporting the idea that the original function of lignin was restricted to water transport. It is covalently linked to hemicellulose and therefore cross-links different plant polysaccharides , conferring mechanical strength to the cell wall and by extension the plant as a whole ...
Diagram showing the alternation of generations between a diploid sporophyte (bottom) and a haploid gametophyte (top) A sporophyte (/ ˈ s p ɔːr. ə ˌ f aɪ t /) is the diploid multicellular stage in the life cycle of a plant or alga which produces asexual spores.
A chemical bond is the association of atoms or ions to form molecules, crystals, and other structures. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds or through the sharing of electrons as in covalent bonds, or some combination of these effects.
The term spore derives from the ancient Greek word σπορά spora, meaning "seed, sowing", related to σπόρος sporos, "sowing", and σπείρειν speirein, "to sow".
The discovery and categorization of heterolytic bond fission was clearly dependent on the discovery and categorization of the chemical bond. In 1916, chemist Gilbert N. Lewis developed the concept of the electron-pair bond, in which two atoms share one to six electrons, thus forming the single electron bond, a single bond, a double bond, or a triple bond. [3]
In physisorption, perturbation of the electronic states of adsorbent and adsorbate is minimal. The adsorption forces include London Forces, dipole-dipole attractions, dipole-induced attraction and "hydrogen bonding." For chemisorption, changes in the electronic states may be detectable by suitable physical means, in other words, chemical bonding.
Measurably irreversible covalent bonding between a ligand and target molecule is atypical in biological systems. In contrast to the definition of ligand in metalorganic and inorganic chemistry , in biochemistry it is ambiguous whether the ligand generally binds at a metal site, as is the case in hemoglobin .