Search results
Results from the WOW.Com Content Network
Each unit represented in UCUM is identified as either "metric" or "non-metric". [5] Metric units can accept metric prefixes as in SI. Non-metric units are not permitted to be used with prefixes. All of the base units are metric. UCUM refers to units that are defined on non-ratio scales as "special units". Common examples include the bel and ...
A number of different units (some only of historical interest) are shown and expressed in terms of the corresponding SI unit. Conversions between units in the metric system are defined by their prefixes (for example, 1 kilogram = 1000 grams, 1 milligram = 0.001 grams) and are thus not listed in this article.
An input unit can be converted to any number of output units—the outputs are specified as a "combination" by separating unit codes with a space (" ") or a plus ("+"). Using a space as a separator does not work if any of the unit codes contains a space. For example, each of the following converts 1.2 km 2 to acres, square yards, and hectares.
For example, a mass flow rate of 1,000 kg/h of air at 1 atmosphere of absolute pressure is 455 SCFM when defined at 32 °F (0 °C) but 481 SCFM when defined at 60 °F (16 °C). Due to the variability of the definition and the consequences of ambiguity, it is best engineering practice to state what standard conditions are used when communicating ...
Note that the m³ gas conversion factor takes into account a difference in the standard temperature base for measurement of gas volumes in metric and imperial units. The standard temperature for metric measurement is 15 degrees Celsius (i.e. 59 degrees Fahrenheit) while for English measurement the standard temperature is 60 °F.
Conversion of units is the conversion of the unit of measurement in which a quantity is expressed, typically through a multiplicative conversion factor that changes the unit without changing the quantity. This is also often loosely taken to include replacement of a quantity with a corresponding quantity that describes the same physical property.
The metric equivalent flow factor (K v) is calculated using metric units: =, where [3]. K v is the flow factor (expressed in m 3 /h), Q is the flowrate (expressed in m 3 /h), SG is the specific gravity of the fluid (for water = 1),
Atmospheric pollutant concentrations expressed as mass per unit volume of atmospheric air (e.g., mg/m 3, μg/m 3, etc.) at sea level will decrease with increasing altitude because the atmospheric pressure decreases with increasing altitude. The change of atmospheric pressure with altitude can be obtained from this equation: [2]