Search results
Results from the WOW.Com Content Network
Cofactor may also refer to: Cofactor (biochemistry), a substance that needs to be present in addition to an enzyme for a certain reaction to be catalysed; A domain parameter in elliptic curve cryptography, defined as the ratio between the order of a group and that of the subgroup; Cofactor (linear algebra), the signed minor of a matrix
In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix generated from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and inverse of square matrices.
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n-matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1)-submatrices of B.
The succinate dehydrogenase complex showing several cofactors, including flavin, iron–sulfur centers, and heme.. A cofactor is a non-protein chemical compound or metallic ion that is required for an enzyme's role as a catalyst (a catalyst is a substance that increases the rate of a chemical reaction).
Then, applied to the representation of split-quaternions as 2×2 real matrices, the above algebra homomorphism is the matrix similarity. M ↦ S − 1 M S . {\displaystyle M\mapsto S^{-1}MS.} It follows almost immediately that for a split quaternion represented as a complex matrix, the conjugate is the matrix of the cofactors, and the norm is ...
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
By the Rouché–Capelli theorem, the system of equations is inconsistent, meaning it has no solutions, if the rank of the augmented matrix (the coefficient matrix augmented with an additional column consisting of the vector b) is greater than the rank of the coefficient matrix. If, on the other hand, the ranks of these two matrices are equal ...