enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    As the Levi-Civita symbol is a pseudotensor, the result of taking a cross product is a pseudovector, not a vector. [5] Under a general coordinate change, the components of the permutation tensor are multiplied by the Jacobian of the transformation matrix. This implies that in coordinate frames different from the one in which the tensor was ...

  4. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    The cross product of two vectors is given by: [4]: ... where ε ijk is the permutation symbol and e i is a Cartesian basis vector. In curvilinear coordinates, the ...

  5. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    The generalization of the dot product formula to Riemannian manifolds is a defining property of a Riemannian connection, which differentiates a vector field to give a vector-valued 1-form. Cross product rule

  7. Einstein notation - Wikipedia

    en.wikipedia.org/wiki/Einstein_notation

    In three dimensions, the cross product of two vectors with respect to a positively oriented orthonormal basis, meaning that =, can be expressed as: = Here, ε j k i = ε i j k {\displaystyle \varepsilon _{\,jk}^{i}=\varepsilon _{ijk}} is the Levi-Civita symbol .

  8. Vector multiplication - Wikipedia

    en.wikipedia.org/wiki/Vector_multiplication

    The cross product occurs frequently in the study of rotation, where it is used to calculate torque and angular momentum. It can also be used to calculate the Lorentz force exerted on a charged particle moving in a magnetic field. The dot product is used to determine the work done by a constant force.

  9. Seven-dimensional cross product - Wikipedia

    en.wikipedia.org/.../Seven-dimensional_cross_product

    In three dimensions the cross product is invariant under the action of the rotation group, SO(3), so the cross product of x and y after they are rotated is the image of x × y under the rotation. But this invariance is not true in seven dimensions; that is, the cross product is not invariant under the group of rotations in seven dimensions, SO(7).