Search results
Results from the WOW.Com Content Network
The operator is said to be positive-definite, and written >, if , >, for all {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.
A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p) -form η {\displaystyle \eta } on an n -dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p) -forms ζ with compact support, we have ∫ M η ∧ ζ ≥ 0 ...
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint (or adjoint) operator on that space according to the rule A x , y = x , A ∗ y , {\displaystyle \langle Ax,y\rangle =\langle x,A^{*}y\rangle ,}
In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space.A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui-meaning "one and a ...
Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint, in which case similar definitions apply, but we discuss ...
If 2 is invertible in the *-ring, then the operators 1 / 2 (1 + *) and 1 / 2 (1 − *) are orthogonal idempotents, [2] called symmetrizing and anti-symmetrizing, so the algebra decomposes as a direct sum of modules (vector spaces if the *-ring is a field) of symmetric and anti-symmetric (Hermitian and skew Hermitian) elements.