Search results
Results from the WOW.Com Content Network
Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters. 89: Largest base for which all left-truncatable primes are known. 90: Nonagesimal: Related to Goormaghtigh conjecture for the generalized repunit numbers (111 in base 90 = 1111111111111 in base 2). 95: Number of printable ASCII characters ...
The operator is said to be positive-definite, and written >, if , >, for all {}. [ 1 ] Many authors define a positive operator A {\displaystyle A} to be a self-adjoint (or at least symmetric) non-negative operator.
Moreover, since A and B are Hermitian matrices, their eigenvalues are all real numbers. If λ 1 (B) is the maximum eigenvalue of B and λ n (A) the minimum eigenvalue of A, a sufficient criterion to have A ≥ B is that λ n (A) ≥ λ 1 (B). If A or B is a multiple of the identity matrix, then this criterion is also necessary.
Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N* = N −1; Hermitian operators (i.e., self-adjoint operators): N* = N; skew-Hermitian operators: N* = −N; positive operators: N = MM* for some M (so N is self-adjoint).
If A is Hermitian and Ax, x ≥ 0 for every x, then A is called 'nonnegative', written A ≥ 0; if equality holds only when x = 0, then A is called 'positive'. The set of self adjoint operators admits a partial order, in which A ≥ B if A − B ≥ 0. If A has the form B*B for some B, then A is nonnegative; if B is invertible, then A is positive.
Let denote the space of Hermitian matrices, + denote the set consisting of positive semi-definite Hermitian matrices and + + denote the set of positive definite Hermitian matrices. For operators on an infinite dimensional Hilbert space we require that they be trace class and self-adjoint, in which case similar definitions apply, but we discuss ...
This means that the integer part of the natural logarithm of a number in base e counts the number of digits before the separating point in that number, minus one. The base e is the most economical choice of radix β > 1, [ 4 ] where the radix economy is measured as the product of the radix and the length of the string of symbols needed to ...
A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p) -form η {\displaystyle \eta } on an n -dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p) -forms ζ with compact support, we have ∫ M η ∧ ζ ≥ 0 ...