Search results
Results from the WOW.Com Content Network
[a] While processes in isolated systems are never reversible, [3] cyclical processes can be reversible or irreversible. [4] Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. [3] Melting or freezing of ice in water is an example of a realistic process that is nearly reversible.
A process is said to be physically reversible if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting this property that is referred to as charge recovery logic , adiabatic circuits , or adiabatic computing (see Adiabatic process ).
The Newton and the Schrödinger equations in the absence of the macroscopic magnetic fields and in the inertial frame of reference are T-invariant: if X(t) is a solution then X(-t) is also a solution (here X is the vector of all dynamic variables, including all the coordinates of particles for the Newton equations and the wave function in the configuration space for the Schrödinger equation).
In some cases, when analyzing a thermodynamic process, one can assume that each intermediate state in the process is at equilibrium. Such a process is called quasistatic. [4] For a process to be reversible, each step in the process must be reversible. For a step in a process to be reversible, the system must be in equilibrium throughout the step.
Many redox processes observed by CV are quasi-reversible or non-reversible. In such cases the thermodynamic potential E 0 1/2 is often deduced by simulation. The irreversibility is indicated by i pa /i pc ≠ 1. Deviations from unity are attributable to a subsequent chemical reaction that is triggered by the electron transfer.
Another cycle that features isothermal heat-addition and heat-rejection processes is the Stirling cycle, which is an altered version of the Carnot cycle in which the two isentropic processes featured in the Carnot cycle are replaced by two constant-volume regeneration processes. The cycle is reversible, meaning that if supplied with mechanical ...
Endoreversible thermodynamics is a subset of irreversible thermodynamics aimed at making more realistic assumptions about heat transfer than are typically made in reversible thermodynamics. It gives an upper bound on the power that can be derived from a real process that is lower than that predicted by Carnot for a Carnot cycle , and ...
Reversible reaction, a chemical reaction for which the position of the chemical equilibrium is very sensitive to the imposed physical conditions; so the reaction can be made to run either forwards or in reverse by changing those conditions; Reversible computing, logical reversibility of a computation; a computational step for which a well ...