Search results
Results from the WOW.Com Content Network
Comparison of damping factors for a solid state amplifier (Luxman L-509u) and a tube amplifier (Rogue Atlas) In typical solid state and tube amplifiers, the damping factor varies as a function of frequency. In solid state amplifiers, the damping factor usually has a maximum value at low frequencies, and it reduces progressively at higher ...
In the filtering application, the resistor becomes the load that the filter is working into. The value of the damping factor is chosen based on the desired bandwidth of the filter. For a wider bandwidth, a larger value of the damping factor is required (and vice versa). The three components give the designer three degrees of freedom.
The (non-negative) damping factor is adjusted at each iteration. If reduction of S {\displaystyle S} is rapid, a smaller value can be used, bringing the algorithm closer to the Gauss–Newton algorithm , whereas if an iteration gives insufficient reduction in the residual, λ {\displaystyle \lambda } can be increased ...
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
There is no unit designation for transmissibility, although it may sometimes be referred to as the Q factor. The transmissibility is used in calculation of passive hon efficiency. The lesser the transmissibility the better is the damping or the isolation system.
= is called the "damping ratio". Step response of a damped harmonic oscillator; curves are plotted for three values of μ = ω 1 = ω 0 √ 1 − ζ 2. Time is in units of the decay time τ = 1/(ζω 0). The value of the damping ratio ζ critically determines the behavior of the system. A damped harmonic oscillator can be:
Classic model used for deriving the equations of a mass spring damper model. The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers.