enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear quantile regression models a particular conditional quantile, for example the conditional median, as a linear function β T x of the predictors. Mixed models are widely used to analyze linear regression relationships involving dependent data when the dependencies have a known structure.

  3. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Graph of points and linear least squares lines in the simple linear regression numerical example The 0.975 quantile of Student's t -distribution with 13 degrees of freedom is t * 13 = 2.1604 , and thus the 95% confidence intervals for α and β are

  4. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    For example, a researcher is building a linear regression model using a dataset that contains 1000 patients (). If the researcher decides that five observations are needed to precisely define a straight line ( m {\displaystyle m} ), then the maximum number of independent variables ( n {\displaystyle n} ) the model can support is 4, because

  5. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  6. Generalized linear model - Wikipedia

    en.wikipedia.org/wiki/Generalized_linear_model

    In statistics, a generalized linear model (GLM) is a flexible generalization of ordinary linear regression.The GLM generalizes linear regression by allowing the linear model to be related to the response variable via a link function and by allowing the magnitude of the variance of each measurement to be a function of its predicted value.

  7. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.

  8. Outline of regression analysis - Wikipedia

    en.wikipedia.org/wiki/Outline_of_regression_analysis

    The following outline is provided as an overview of and topical guide to regression analysis: Regression analysis – use of statistical techniques for learning about the relationship between one or more dependent variables ( Y ) and one or more independent variables ( X ).

  9. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    The dashed green line represents the ground truth from which the samples were generated. In non-parametric statistics, the Theil–Sen estimator is a method for robustly fitting a line to sample points in the plane (simple linear regression) by choosing the median of the slopes of all lines through pairs of points.