Search results
Results from the WOW.Com Content Network
The natural bite angle (β n) of diphosphines, obtained using molecular mechanics calculations, is defined as the preferred chelation angle determined only by ligand backbone and not by metal valence angles (Figure 3). [1] Figure 3. Bite angle of a diphosphine ligand bound to rhodium.
Bernoulli's equation; Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy of equations; Bessel's differential equation; Boltzmann equation; Borda–Carnot equation; Burgers' equation; Darcy–Weisbach equation; Dirac equation. Dirac equation in the algebra of physical space; Dirac–Kähler equation; Doppler equations; Drake equation (aka ...
For some simple bearing geometries and boundary conditions, the Reynolds equation can be solved analytically. Often however, the equation must be solved numerically. Frequently this involves discretizing the geometric domain, and then applying a finite technique - often FDM, FVM, or FEM.
In chemistry, a chemical oscillator is a complex mixture of reacting chemical compounds in which the concentration of one or more components exhibits periodic changes. They are a class of reactions that serve as an example of non-equilibrium thermodynamics with far-from-equilibrium behavior.
An example is the flow above air hockey tables, where the thickness of the air layer beneath the puck is much smaller than the dimensions of the puck itself. Internal flows are those where the fluid is fully bounded. Internal flow lubrication theory has many industrial applications because of its role in the design of fluid bearings.
For example, F/C=C/F (see depiction) is one representation of trans-1,2-difluoroethylene, in which the fluorine atoms are on opposite sides of the double bond (as shown in the figure), whereas F/C=C\F (see depiction) is one possible representation of cis-1,2-difluoroethylene, in which the fluorines are on the same side of the double bond.
In chemistry, T-shaped molecular geometry describes the structures of some molecules where a central atom has three ligands. Ordinarily, three-coordinated compounds adopt trigonal planar or pyramidal geometries. Examples of T-shaped molecules are the halogen trifluorides, such as ClF 3. [1]
Figure 4: Rangekeeper Determination of Angular Rate. The calculation of angular rate requires knowledge of the target and own ship course, speed, and range. The prediction of azimuth [21] is performed similarly to the range prediction. [1] Equation 5 is the fundamental relationship, whose derivation is illustrated in Figure 4.