Search results
Results from the WOW.Com Content Network
Hypercapnia (from the Greek hyper, "above" or "too much" and kapnos, "smoke"), also known as hypercarbia and CO 2 retention, is a condition of abnormally elevated carbon dioxide (CO 2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs.
Many people with chronic obstructive pulmonary disease have a low partial pressure of oxygen in the blood and high partial pressure of carbon dioxide.Treatment with supplemental oxygen may improve their well-being; alternatively, in some this can lead to the adverse effect of elevating the carbon dioxide content in the blood (hypercapnia) to levels that may become toxic.
Respiratory failure is classified as either Type 1 or Type 2, based on whether there is a high carbon dioxide level, and can be acute or chronic. In clinical trials, the definition of respiratory failure usually includes increased respiratory rate, abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing.
An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide.An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle, [1] but sometimes the femoral artery in the groin or another site is used.
Permissive hypercapnia is hypercapnia (i.e. high concentration of carbon dioxide in blood) in respiratory insufficient patients in which oxygenation has become so difficult that the optimal mode of mechanical ventilation (with oxygenation in mind) is not capable of exchanging enough carbon dioxide. Carbon dioxide is a gaseous product of the ...
Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction ...
A high concentration of central chemoreceptors is found in the ventral medulla, the brainstem area that receives input from peripheral chemoreceptors. [12] Taken together, these blood oxygen monitors contribute nerve signals to the vasomotor center of the medulla which can modulate several processes, including breathing, airway resistance ...
The effect of temperature on the binding of carbon dioxide to hemoglobin is less noticeable compared to other gases, but this factor can still have an influence on the overall regulation of gas exchange. [10] Concentration of Bicarbonate (HCO 3 −): A high percentage of carbon dioxide in the bloodstream is transferred in the form of ...