Search results
Results from the WOW.Com Content Network
The (n − 3)-faces of an n-polytope are called peaks. A peak contains a rotational axis of facets and ridges in a regular polytope or honeycomb. For example: The peaks of a 3D polyhedron or plane tiling are its 0-faces or vertices. The peaks of a 4D polytope or 3-honeycomb are its 1-faces or edges.
The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces. The possible faces are 3 - equilateral ...
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
A face of a convex polytope P may be defined as the intersection of P and a closed halfspace H such that the boundary of H contains no interior point of P. The dimension of a face is the dimension of this hull. The 0-dimensional faces are the vertices themselves, and the 1-dimensional faces (called edges) are line segments connecting pairs of ...
In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.
A subset F of a polyhedron P is called a face of P if there is a halfspace H (defined by some inequality a 1 T x ≤ b 1) such that H contains P and F is the intersection of H and P. [3]: 9 If a face contains a single point {v}, then v is called a vertex of P. If a face F is nonempty and n-1 dimensional, then F is called a facet of P.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
The hemi-cube is a regular projective polyhedron with 3 square faces, 6 edges, and 4 vertices. The best-known examples of projective polyhedra are the regular projective polyhedra, the quotients of the centrally symmetric Platonic solids, as well as two infinite classes of even dihedra and hosohedra: [4] Hemi-cube, {4,3}/2; Hemi-octahedron, {3,4}/2