Search results
Results from the WOW.Com Content Network
One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.
The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3 , or 3 raised to the 5th power . The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1).
x = Re z is the real part, y = Im z is the imaginary part, r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π.
Applying the f function k times to the number n = 2 k a + b will give the result 3 c a + d, where d is the result of applying the f function k times to b, and c is how many increases were encountered during that sequence.
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For instance, to find the product of 13 and 21 one had to double 21 three times, obtaining 2 × 21 = 42, 4 × 21 = 2 × 42 = 84, 8 × 21 = 2 × 84 = 168. The full product could then be found by adding the appropriate terms found in the doubling sequence: [ 16 ]