enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    An alternative to explicitly modelling the heteroskedasticity is using a resampling method such as the wild bootstrap. Given that the studentized bootstrap, which standardizes the resampled statistic by its standard error, yields an asymptotic refinement, [13] heteroskedasticity-robust standard errors remain nevertheless useful.

  3. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Stata, the command newey produces Newey–West standard errors for coefficients estimated by OLS regression. [13] In MATLAB, the command hac in the Econometrics toolbox produces the Newey–West estimator (among others). [14] In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West.

  4. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Heteroscedasticity often occurs when there is a large difference among the sizes of the observations. A classic example of heteroscedasticity is that of income versus expenditure on meals. A wealthy person may eat inexpensive food sometimes and expensive food at other times. A poor person will almost always eat inexpensive food.

  5. White test - Wikipedia

    en.wikipedia.org/wiki/White_test

    An alternative to the White test is the Breusch–Pagan test, where the Breusch-Pagan test is designed to detect only linear forms of heteroskedasticity. Under certain conditions and a modification of one of the tests, they can be found to be algebraically equivalent.

  6. Weighted least squares - Wikipedia

    en.wikipedia.org/wiki/Weighted_least_squares

    Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.

  7. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    Whereas GLS is more efficient than OLS under heteroscedasticity (also spelled heteroskedasticity) or autocorrelation, this is not true for FGLS. The feasible estimator is asymptotically more efficient (provided the errors covariance matrix is consistently estimated), but for a small to medium-sized sample, it can be actually less efficient than ...

  8. Prais–Winsten estimation - Wikipedia

    en.wikipedia.org/wiki/Prais–Winsten_estimation

    In econometrics, Prais–Winsten estimation is a procedure meant to take care of the serial correlation of type AR(1) in a linear model.Conceived by Sigbert Prais and Christopher Winsten in 1954, [1] it is a modification of Cochrane–Orcutt estimation in the sense that it does not lose the first observation, which leads to more efficiency as a result and makes it a special case of feasible ...

  9. Breusch–Pagan test - Wikipedia

    en.wikipedia.org/wiki/Breusch–Pagan_test

    If the test statistic has a p-value below an appropriate threshold (e.g. p < 0.05) then the null hypothesis of homoskedasticity is rejected and heteroskedasticity assumed. If the Breusch–Pagan test shows that there is conditional heteroskedasticity, one could either use weighted least squares (if the source of heteroskedasticity is known) or ...