enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Misuse of statistics - Wikipedia

    en.wikipedia.org/wiki/Misuse_of_statistics

    That is, a misuse of statistics occurs when a statistical argument asserts a falsehood. In some cases, the misuse may be accidental. In others, it is purposeful and for the gain of the perpetrator. When the statistical reason involved is false or misapplied, this constitutes a statistical fallacy.

  3. Type I and type II errors - Wikipedia

    en.wikipedia.org/wiki/Type_I_and_type_II_errors

    In statistical hypothesis testing, a type I error, or a false positive, is the erroneous rejection of a true null hypothesis. A type II error, or a false negative, is the erroneous failure in bringing about appropriate rejection of a false null hypothesis. [1]

  4. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate. In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors ...

  5. List of fallacies - Wikipedia

    en.wikipedia.org/wiki/List_of_fallacies

    Persuasive definition – purporting to use the "true" or "commonly accepted" meaning of a term while, in reality, using an uncommon or altered definition. (cf. the if-by-whiskey fallacy) Ecological fallacy – inferring about the nature of an entity based solely upon aggregate statistics collected for the group to which that entity belongs. [27]

  6. Base rate fallacy - Wikipedia

    en.wikipedia.org/wiki/Base_rate_fallacy

    The false negative rate: If the camera scans a terrorist, a bell will ring 99% of the time, and it will fail to ring 1% of the time. The false positive rate: If the camera scans a non-terrorist, a bell will not ring 99% of the time, but it will ring 1% of the time. Suppose now that an inhabitant triggers the alarm.

  7. Selection bias - Wikipedia

    en.wikipedia.org/wiki/Selection_bias

    Selection bias is the bias introduced by the selection of individuals, groups, or data for analysis in such a way that proper randomization is not achieved, thereby failing to ensure that the sample obtained is representative of the population intended to be analyzed. [1]

  8. Correlation does not imply causation - Wikipedia

    en.wikipedia.org/wiki/Correlation_does_not_imply...

    [3] That is the meaning intended by statisticians when they say causation is not certain. Indeed, p implies q has the technical meaning of the material conditional: if p then q symbolized as p → q. That is, "if circumstance p is true, then q follows." In that sense, it is always correct to say "Correlation does not imply causation."

  9. Faulty generalization - Wikipedia

    en.wikipedia.org/wiki/Faulty_generalization

    In statistics, it may involve basing broad conclusions regarding a statistical survey from a small sample group that fails to sufficiently represent an entire population. [1] [6] [7] Its opposite fallacy is called slothful induction, which consists of denying a reasonable conclusion of an inductive argument (e.g. "it was just a coincidence").