Search results
Results from the WOW.Com Content Network
The angles that Bragg's law predicts are still approximately right, but in general there is a lattice of spots which are close to projections of the reciprocal lattice that is at right angles to the direction of the electron beam. (In contrast, Bragg's law predicts that only one or perhaps two would be present, not simultaneously tens to hundreds.)
The Laue equations can be written as = = as the condition of elastic wave scattering by a crystal lattice, where is the scattering vector, , are incoming and outgoing wave vectors (to the crystal and from the crystal, by scattering), and is a crystal reciprocal lattice vector.
Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...
In the Figure the red dot is the origin for the wavevectors, the black spots are reciprocal lattice points (vectors) and shown in blue are three wavevectors. For the wavevector k 1 {\displaystyle \mathbf {k_{1}} } the corresponding reciprocal lattice point g 1 {\displaystyle \mathbf {g_{1}} } lies on the Ewald sphere, which is the condition for ...
This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...
The reciprocal lattice is easily constructed in one dimension: for particles on a line with a period , the reciprocal lattice is an infinite array of points with spacing /. In two dimensions, there are only five Bravais lattices. The corresponding reciprocal lattices have the same symmetry as the direct lattice.
While there are similarities between the diffraction of X-rays and electrons, as can be found in the book by John M. Cowley, [23] the approach is different as it is based upon the original approach of Hans Bethe [31] and solving Schrödinger equation for relativistic electrons, rather than a kinematical or Bragg's law approach. Information ...
A breather is a localized periodic solution of either continuous media equations or discrete lattice equations. The exactly solvable sine-Gordon equation [1] and the focusing nonlinear Schrödinger equation [2] are examples of one-dimensional partial differential equations that possess breather solutions. [3]