Search results
Results from the WOW.Com Content Network
The rhombus has a square as a special case, and is a special case of a kite and parallelogram.. In plane Euclidean geometry, a rhombus (pl.: rhombi or rhombuses) is a quadrilateral whose four sides all have the same length.
Another area formula, for two sides B and C and angle θ, is K = B ⋅ C ⋅ sin θ . {\displaystyle K=B\cdot C\cdot \sin \theta .\,} Provided that the parallelogram is not a rhombus, the area can be expressed using sides B and C and angle γ {\displaystyle \gamma } at the intersection of the diagonals: [ 9 ]
In the case of an orthodiagonal quadrilateral (e.g. rhombus, square, and kite), this formula reduces to = since θ is 90°. The area can be also expressed in terms of bimedians as [16] = , where the lengths of the bimedians are m and n and the angle between them is φ.
Additionally, if a convex kite is not a rhombus, there is a circle outside the kite that is tangent to the extensions of the four sides; therefore, every convex kite that is not a rhombus is an ex-tangential quadrilateral. The convex kites that are not rhombi are exactly the quadrilaterals that are both tangential and ex-tangential. [17]
In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term rhomboid is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square.
rhombus In Euclidean plane geometry , a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles . It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle.
Traditionally, in two-dimensional geometry, a rhomboid is a parallelogram in which adjacent sides are of unequal lengths and angles are non-right angled.. The terms "rhomboid" and "parallelogram" are often erroneously conflated with each other (i.e, when most people refer to a "parallelogram" they almost always mean a rhomboid, a specific subtype of parallelogram); however, while all rhomboids ...
In geometry, a rhombohedron (also called a rhombic hexahedron [1] [2] or, inaccurately, a rhomboid [a]) is a special case of a parallelepiped in which all six faces are congruent rhombi. [3]